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SUMMARY 

We develop simulation tools for the non-stationary incompressible 2D Navier-Stokes equations. The most 
important components of the finite element code are: the fractional step k c h e m e ,  which is of second-order 
accuracy and strongly A-stable, for the time discretization; a fixed point defect correction method with 
adaptive step length control for the non-linear problems (stationary Navier-Stokes equations); a modified 
upwind discretization of higher-order accuracy for the convective terms. Finally, the resulting nonsymmetric 
linear subproblems are treated by a special multigrid algorithm which is adapted to the quadrilateral 
non-conforming discretely divergence-free finite elements. For the graphical postprocess we use a fully 
non-stationary and interactive particle-tracing method. With extensive test calculations we show that our 
method is a candidate for a ‘black box’ solver. 

K E Y  WORDS Non-stationary Navier-Stokes equations Upwind Divergence-free finite elements Multigrid 
Visualization 

1. INTRODUCTION 

We consider the ‘usual’ Navier-Stokes equations 

u, - vAu + (u * V)u + V p  = f, V - u = 0 in R x (0, T )  

for a given force f and viscosity v, with prescribed boundary values on 8R and an initial condition 
at t = 0. The variables u and p describe the velocity and pressure respectively of a viscous 
incompressible flow in a bounded region R c R2. 

These fundamental equations are of interest to both more theoretical scientists such as 
mathematicians or physicists and more applied scientists such as engineers or industrial users. 
What are the theoretical aspects needed to develop and implement an algorithm to solve these 
equations? Our mathematical research led us to examine the following problems: efficient 
treatment of the non-linearity, error estimates for spatial and time discretizations, construction 
of fast linear solvers, modelling of boundary conditions, and many others. It is very important 
not only to solve these problems in a theoretical way but also to see the results in ‘real life’ via 
computer simulations. It is not sufficient to prove very good convergence rates for a method if 
the corresponding cost is too high. For instance, direct Gaussian elimination has the best 
convergence rates (zero) but no one will use it for very large systems because 0 ( n 3 )  arithmetic 
operations are needed (with n unknowns). Also, some schemes of (theoretically) first-order 
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accuracy may yield better results than certain second-order methods, since the asymptotic range 
implicit in the proof is (nearly) never reached. Therefore numerical experiences have a large 
influence on our theoretical work and should not be neglected. 

On the other hand, engineers are also interested in an efficient solution method for these 
equations. The simulation of various complex fluid structures, the development of new models 
for ‘real’ problems and, not least, the saving of money by doing a computer simulation rather 
than an expensive laboratory test are all requirements which appear every day. Now our aim is 
to develop and realistically implement a solution method which satisfies both parties; this means 
we that would like to construct a so-called ‘black box’ solver. This term is often used, but in 
many cases its meaning is not clear, so we must define it. What we cannot offer is a ‘black 
universal method’; we only present a method which attempts to give the user a ‘fast’, ‘robust’ 
and ‘accurate’ solution. Then the problem is to determine whether the computed ‘solution’ is 
physically relevant, since our method by itself does not necessarily produce the ‘right solution’ 
fulfilling a prescribed accuracy corresponding to the real flow. 

In this sense we will develop an FRA method (fast-robust-accurate), with the emphasis on 
the term method as opposed to algorithm or solver. Thus first we have to explain the key words 
‘fast’, ‘robust’ and ‘accurate’. 

Our implemented algorithm should produce the results in a ‘short’ amount of time operating 
on a workstation. We prefer this class of machine, because at today’s prices (nearly) every institute 
can afford such computers. Additionally, these machines are very fast, complete as well as robust 
and the future trend indicates that they will only improve. By ‘fast’ we mean that we want to 
compute a fully developed non-stationary flow in hours with an accuracy which is essentially 
determined by the available RAM memory. Thus, for instance, in our actual computations we 
computed the fully developed vortex street behind an ellipse with 40 000 ‘semi-adaptively’ 
distributed grid points in less than 1 day on a SUN IPC. 

Another aspect of the term ‘fast’ involves being able to change ideas and easily implement 
new ideas by adding subroutines to the existing code. Hence we need a very modular 
programming structure and very clever data management. The basis of all our programmes is 
the finite element package FEAT2D which was developed by our numerical group in Heidel- 
berg.’ This basis enables several people to work and co-operate in the same field. 

Finally, another important aspect of ‘fast’ is the fast graphical presentation of the computed 
data. Most workstations have very fine graphics features and, for example, enable one to compute 
and visualize at the same time. Hence we also have to provide the corresponding graphical 
algorithms and subroutines. 

When we say our method is stable, we think of several aspects. First, the implemented 
algorithm should be independent of given ‘data’ such as the shape of the domain (not convex, 
not polygonal, several boundary components), the mesh (not equidistant, refined in some 
parts) and the size of the force, viscosity and boundary values. Thus by ‘robust’ we mean 
that our finite element discretization works for (nearly) all meshes, that our linear solvers 
(almost) always produce the same convergence rates and that the non-linear convergence 
rates do not become too bad for higher Reynolds numbers. What we do not claim is that 
our algorithm works completely independently of all these ‘parameters’, since, for instance, 
it is clear that a stationary Navier-Stokes solver may diverge for higher Reynolds numbers 
if there is no stable stationary solution and it is also clear that the time step size is dependent 
on the physical flow structure. The aim is to develop a method which requires defining 
only the domain, the right-hand side, the boundary values and the viscosity; then the algorithm 
attempts to produce results in an ‘optimal’ way. We think the proposed method is a step 
in this direction. 
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Another aspect is the robustness of the implementation. The programme should be organized 
in a very modular structure in order to simplify and control possible errors when making changes 
to the programme. The worst case is to have a code with 30000 lines and to change a small 
part, resulting in errors in other routines. This often costs much more time than many simulation 
processes with the (correctly) modified algorithm. 

We also emphasize that ‘robustness’ includes the aspect of whether the algorithm is analysable 
and in a certain sense ‘deterministic’ for the user. Therefore, for instance, variational formulations 
and discretizations by finite elements are used, because these allow, at least for some simpler 
model problems, a strong analysis and can be helpful to explain some ‘funny’ results of the 
implemented code. Thus only well-known ‘standard methods’ are used, such as stable finite 
element pairs for the discretization, fast multigrid algorithms, fixed point defect correction 
methods for the non-linearity and well-known time discretization schemes for the non-stationary 
processes. Finally, our graphical support should work (in a robust way) independently of the 
above-mentioned ‘data’, something which is not fulfilled by some existing graphics packages. 

The question of accuracy is the most critical and difficult point of our method. As mentioned 
above, we cannot present a ‘black universal method’ which tells the user the quality of the 
computed solutions compared with the exact ones. What we can present is a ‘solution’ with the 
‘best accuracy’ reachable for a given machine and time. Here one has to consider that the more 
accurate methods are sometimes not the fastest ones. Therefore very simple finite elements (of 
second order) and only time and space discretization schemes of first or second order are used, 
since then corresponding solution methods which are very fast can be constructed (divergence- 
free finite elements, multigrid methods). For the grid construction process the best method would 
be a fully adaptive method. One reason we do not use this is because at this moment we do not 
have the right tool, while on the other hand our ‘semi-adaptive’ method (see next paragraph) 
leads to a very regular data structure, which gives perhaps not the absolutely most accurate 
results but leads to a very efficient multigrid solution method. 

Now we want to introduce the three main parts of our ‘FRA black box’ method: 

(i) input of all needed ‘data’ 
(ii) fully modular finite element solver 

(iii) graphical postprocessing. 

The perfect method would be to define only the computational domain (perhaps in a graphical 
way) and the input data (such as force term, viscosity and boundary values) and then have 
the algorithm produce the most accurate solution depending on the available memory and 
proposed time limit. Unfortunately, at this time we are unable to accomplish this goal. 
At present our realized method needs, besides the description of the domain, also a ‘coarse’ 
grid which can be already slightly adapted to the expected solution (e.g. after small test 
calculations or after comparing with existing theoretical and practical results). Then this 
‘coarse’ grid is systematically refined (corresponding to the available memory) and the 
computation may begin. The resulting grids are called ‘semi-adaptive’ in our framework. For 
non-stationary problems one still has to define the time step size, because (presently) we did 
not implement an adaptive step size control. However, since our time discretization scheme in 
unconditionally stable, this parameter can be chosen depending solely on physical reasons and 
not on (purely) mathematical stability conditions. These non-self-adaptive methods do not 
guarantee the most accurate ‘solution’ but do give a nearly optimal ‘solution’ in a short amount 
of time. 

The most important components of our finite element code are the following (we leave a more 
detailed description to the subsequent sections): 
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(i) the finite element package FEAT2D (in Fortran 77) with a pseudodynamic memory 
concept and basic finite element tools for grid generation, stiffness matrices, right-hand 
sides and boundary conditions 

(ii) a corresponding package with basic linear algebra tools and linear solvers (e.g. Jacobi, 
Gauss-Seidel or PCG methods (preconditioned conjugate gradient), several multigrid 
components) for the linearized Navier-Stokes equations 

(iii) upwind discretizations and a fixed point defect correction method for the non-linearity 
for the stationary Navier-Stokes solver 

(iv) time discretization schemes for the fully non-stationary Navier-Stokes equations. 

We use standard graphics packages such as MOVIE.BYU (for 2D applications such as 
streamlines, vector plots and 3D pressure plots) and AVS (for 3D applications). Additionally, 
we developed some modules for non-stationary flows, for example a fully interactive particle 
tracing with the corresponding data structure. These ‘movies’ can also be transferred directly 
from screen to video tape. We think this non-stationary postprocessing module is the most 
important one, since only with its help is one really able to examine non-stationary flows, because 
these graphical results differ greatly from the streamline or vector plot snapshots. 

After the realization of all these aims a typical ‘application’ with the ‘FRA black box’ method 
follows the structure depicted in Figure 1, with all these tasks running on only one workstation. 

This work is divided into three sections. Section 2 concerns the non-conforming finite element 
spaces and states some stability and approximation results concerning the Stokes equations. We 
describe the process of constructing the corresponding discretely divergence-free subspaces and 
some of their properties. Then we explain our multigrid algorithm with the divergence-free grid 
transfer routines and give some results concerning efficiency and robustness. Section 3 describes 
the upwind discretizations used for the convective terms and the fixed point defect correction 
method for the non-linearity. With these modules we have a solver for stationary Navier-Stokes 
equations. Then, in conjunction with an appropriate time discretization scheme (implicit Euler, 
Crank-Nicolson, fractional step method), we get our final solution method. In Section 4 we show 
some of our test calculations and examine some questions such as a comparison of several 
discretization errors in space and time, the influence of the ‘semi-adaptive’ grids and of the 

Define problem and Compare and verify 
with other “solutions‘ 

Figure I .  Typical application diagram 
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boundary conditions. With all our extensive results we hope to demonstrate that the developed 
method fulfils the conditions of an 'FRA black box' solver. The final section contains conclusions 
concerning the present results and also gives an outlook to possible future research. 

L2(R) and H"(R) are the usual Lebesgue and Sobolev spaces for the domain R c R 2  with the 
usual norms l i . l l o  and l / . l l m .  The inner product of L2(R) is (., .). The space Hh(R) is the completion 
in H'(R) of the space of test functions C:(R) and H-'(R) is its dual space. By Li(R) we denote 
the subspace of all L2(R)-functions over R having mean value zero. Vector-valued functions and 
spaces are denoted by boldface type, such that L2(R) := LZ(R) x L2(R), H"(R) := H"(R) x H"(R) 
and := HA@) x Hh(R). The corresponding norms and inner products are denoted like the 
analogous scalar ones and no distinction is made. For discrete mesh-dependent constructs such 
as triangulations, discrete spaces, norms, inner products, etc. we utilize a subscript h. Normal 
vectors are denoted by n and tangential vectors by t. All other special notations are introduced 
and described as needed. 

2. THE FINITE ELEMENT SPACES AND THEIR PROPERTIES 

We consider the steady Stokes problem 

-Au + Vp = f, V - u  = 0 in R, u = g  on dR, (St) 

where the pair {u, p }  represents the velocity and pressure respectively in a bounded region R c RZ 
with prescribed boundary values on JR and a given force f. For simplicity we assume that R is 
a convex polygon and that the boundary values g are homogeneous. 

Defining the bilinear forms a(u, v) := (Vu, Vv) and b(p, v) := - ( p ,  V - v), the usual weak formula- 
tion of the problem (St) reads 

find a pair {u, p }  E x Lg(R) such that 

a(u, 4 + b(p ,  V) + b(q, U) = (f, v) V{v, q }  E Hh(R) x Li(R). (V) 

An equivalent 'shorter' formulation with V(R) = {v E H;(R): V * v = 0) is 

find u E V(R) such that 
a(u, v) = (f, v) vv  E V(R). 

Problem (V) has a unique solution for any force f E H -  '(a) (see e.g., Reference 2), which is a 
consequence of the well-known stability estimate 

(BB) sup __I ( q , v * v )  b B114110 > 0 V q E L m ,  q # 0, 
veH$R) 11 vv 11 0 

and if f E L2(R), then the solution is in H2(R) x H'(R) and satisfies the a priori estimate 

For the discretization let T, be regular decompositions of the domain R into (convex) 
quadrilaterals denoted by T, where the mesh parameter h > 0 describes the maximum diameter 
of the elements of T,. JT, denotes the set of all boundary edges of the elements T E T ~ .  
Additionally, the family {Th},, is assumed to satisfy the usual uniform shape c ~ n d i t i o n . ~ . ~  The 
common edge between two elements T ,  Ti E T, is denoted by Ti j  with corresponding midpoint 
mii. Analogously, we define the boundary edges ri0 c (dTh n do) with the midpoints mi,. To 
obtain the fine mesh T, from a coarse mesh T,,, we simply connect opposing midpoints (true 
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domain boundaries are respected, which means that all boundary nodes are on the true domain 
boundary). In the new grid Th the old midpoints become vertices. As mentioned before, for 
programming reasons in our multigrid approach, we do not use adaptive techniques in this work. 

For the approximation of problem (V) by the finite element method we have to introduce 
discrete spaces Hh z HA@) and Lh x Li(R). For this we use the reference element p = [ - 1, 112 
and define for each T E  Th the corresponding 1-1 transformation t+bT: + T. Then we set ('rotated 
bilinear  element^',^) 

&,(TI:= {qo$;'1qEspan(x2 - y 2 , x , y ,  1)). (2) 
The degrees of freedom are determined by the nodal functionals { F p / b ) ( . ) ,  c dTh} with 

Either choice is unisolvent with Ql(T), but each leads to different finite element spaces, since 
the applied midpoint rule is only exact for linear functions. The corresponding (parametric) finite 
element spaces Hh = HlpIb' and Lh are 

Lh:= {qhELi(R)IqhlT = const., VTETh}, Hj,") := $0) Sjpib),  (4) 
with 

{Uh E L2(R)IuhlT E &(T), V T €  Th, Uh COntlnUOUS W.r.t. all the 
( 5 )  

Since the spaces HlpIb) are non-conforming, i.e. HPIb' @ HA@), we have to work with elementwise 
defined bilinear forms and corresponding energy norms: 

Slp/b) : = 
nodal functionals FEY(.), vr,,, and FEr)(uh) = 0, vrio}. 

P 

Let j,: L;(R) -+ Lh be the operator of piecewise constant interpolation (modified to preserve 
the zero-mean-value property) which satisfies4 

114 -jhqllO chllqlll VqEL;(R)nH'(R). (8) 
Further, let $ I b ) :  HA@) + HlpIb' be the global interpolation operator in Hf'Ib' which is determined 
by 

Fr(ijp'b'v) = F,(v) vr c dTh. (9) 
Unfortunately, on general non-uniform meshes the optimal order estimates do not hold for $Ib'. 
This is due to the fact that the spaces Hlp/b) are not isoparametric, i.e. the bilinear transformations 
t+hT: f + T are of another polynomial type than the shape functions on p. In order to guarantee 
proper approximation properties for Hlp/b), we have to impose a certain weak uniformity 
condition on the meshes Th. For each element T E T, let uT E (0, 7c3 denote the maximum angle 
enclosed between the normal unit vectors corresponding to any opposite edges of T (see Figure 
2). Then the quantity 

c h  := maX{ I 7c  - c ( T ( ,  VT E Th} (10) 

is a measure of the degeneration of the mesh Th. 
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Figure 2. Deterioration of quadrilaterals 

Lemma 2 

For the corresponding non-parametric counterparts without any transformation on to the 
reference element the following optimal error estimate for ih = i f / b )  holds:4-5 

110 - i h u l 1 0  + hilo - i h u l l h  < ch211ui12 v u E H ; ( Q )  n H2(Q),  (1 1) 

without any dependence on Gh.  

estimate (BB) the uniform stability result holds for the pair (HIP’, Lh): 
Analogously as in the triangular case,2 it is easy to see that together with the continuous 

The ‘midpoint-oriented’ space Hib’ generally does not satisfy the stability property; we have to 
require the meshes T, to be sufficiently ~ n i f o r m . ~ . ~  

Lemma 3 

Suppose that the quantity u = sUph>o u,, is sufficiently small. Then the stability estimate (12) 
holds true also for the pairing (Hib’, &). 

can derive the asymptotic error estimates for the parametric case.495 
On the basis of our stability estimate (12) and the approximation property of Lemma 1, we 

Lemma 4 

Suppose that the preceding assumptions hold. Then for H h  = Hf’ and if the quantity 
u = suphrO uh is sufficiently small also for H h  = Hib’, the discrete Stokes problems have unique 
solutions {uh, p h }  E H f / b ’  x Lh and further there hold 

(13) 
I I u  - UhIlh  + IIp - Phil0 < c(h + u h ) { ~ ~ u ~ ~ 2  + IIPlll}7 

I / u  - Uhl10 + IIP - Phil - I 6 dh + IIu112 + l\Plil}. 

These results indicate that the convergence of the parametric rotated bilinear Stokes elements 
for h - 0  requires the underlying meshes { T h } h  to be asymptotically uniform in the sense 
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that c h  = max{ I T C  - q.1, VTE Th} + 0 as h -+ 0. This conclusion is supported by our extensive 
numerical  test^.^,^ In fact, the condition for convergence is not very restrictive, since it is, for 
instance, automatically satisfied by ‘weakly’ uniform meshes, which we obtain when using our 
systematic grid refinement process described before, the usual multigrid approach. Therefore 
very complex domains are also admitted. 

When working with the ‘midpoint-oriented’ finite element space Hib’, it is convenient to replace 
the bilinear form bh(., .) by its numerically integrated version 

6 h ( q h ,  vh):=  - q h l T  1 lr lF~)(vh)’nrz - c q h J T  vh*nrdy. (14) 
T e T r  r c a T  T E Ti, rcaT i r 

In this case the uniform stability condition is satisfied without any additional condition on the 
meshes {Th). Then, by some standard perturbation  argument^,^ the estimates of Lemma 4 carry 
over to this case without any condition on the size of ch. 

The non-parametric versions of the spaces HIP”’ have satisfactory approximation properties 
on general regular meshes. The stability properties are the same as those of their parametric 
counterparts, i.e. the optimal order convergence estimates for HAb) can be guaranteed only when 
using the modified bilinear form i h ( ‘ ,  .). Then we get for HIP) and also for Hib) the final results4 

Now we will show how to construct the discretely divergence-free subspaces corresponding 
to the proposed finite element spaces Hf’*’. For this we introduce the modified discrete bilinear 
form 6 h ( - ,  where 

- 
bh(qh, vh):= - c qhlTQT(Vh), Q h h )  := 1 I r I F#h) nr, (16) 

T E T ~  rcaT 

which is for HAb’ an O(h2)-approximation to the original bilinear form b h ( * ,  *). Then we call a 
function v h  E Hh discretely divergence-free if the condition 

6h(qh,  vh) = v q h  E Lh (17) 

is satisfied. Since we only use piecewise constant pressure approximations, an equivalent criterion 
is 

QT(Vh) = 0 VT€ Th. (18) 

With these modifications we can introduce subspaces Hfl c Hh and our discrete problem for the 
velocity is reduced to 

find ufl E Hrf such that 

ah(uf9 Vrf) = (f, Vrf) VVrf E Hrf. 

Finally, the corresponding pressure P h  E Lh is determined by the condition 

where the functions v; span the curl-free part of the complete space Hh. In our configuration 
this is performed4 by a marching process from element to element without solving any linear 
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system of equations. Then for the solution ulf of problem (V:) and its corresponding pressure p h  
there hold again the error estimates 

Now consider a general quadrilateral T E T,, (see Figure 3) with vertices a', midpoints mi, edges 
rj, unit tangential vectors tj and unit normal vectors nJ. Let ( P A  E St'*' be the usual nodal basis 
functions of the finite element space s h  = SZfIb) (see (9)), restricted to the element T, satisfying 
F,,{cp',) = 6,,, i, j = 1, ..., 4. Then the first group of basis functions {v;'} of Hlf, corresponding 
to the edges of T h ,  is given by the local definition 

v$ E (cpit',j = 1, . . . ,4}. (21) 

The second group {v i*} ,  corresponding to the vertices, is locally determined by 

, j =  1, ..., 4,k = ( j +  2 ) m o d 4 +  1 

Thus we get approximations for the tangential velocities on the edges and for the strearn- 
function values at  the  node^.^.^ If we eliminate one of the functions (v;*} by prescribing the value 
at one (boundary) point or by the zero-mean-value condition, we get a basis for the discretely 
divergence-free subspace Hi assuming that our problem has only one boundary component. For 
several boundary components (e.g. for flows around obstacles) we do not need any additional 
basis function, but only have to modify our linear solvers in a simple way (by projection 
methods4.'). 

After introducing these new basis functions, the size of our linear system is reduced from about 
5 nel unknowns (nel is the number of elements) for the usual formulation to about 3 nel in the 
divergence-free case. A disadvantage of the new formulation is that the corresponding stiffness 
matrix s d ,  with 

has a condition number like O(II-~)," while the corresponding mass matrix has a condition 
number like O(h-2) .  However, since we were able to derive a multigrid algorithm with 
convergence rates independent of h, this fact is unimportant for our work. 

Our corresponding multigrid algorithm is developed for linear (unsymmetric) problems, with 
a given coefficient function U, of the type 

(24) au - VAU + (U-V)u + Vp = f, v * u  = 0, 

Figure 3. General quadrilateral T 
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which arise from the linearization of the non-stationary Navier-Stokes equations. The compo- 
nents of the algorithm are the usual ones: some smoothing steps with an appropriate smoothing 
operator, a coarse grid correction with appropriate grid transfer operators, and a step length 
control, which is usual for non-conforming finite Then for the positive definite case 
we can show that the convergence rates are independent of the mesh size h.4 In all our 
computations (with an F-cycle) we use as smoothing operator two pre- and post-smoothing steps 
with the Gauss-Seidel method, and for the grid transfer a macro-elementwise divergence-free 
interpolation which interpolates a given discretely divergence-free frunction on level 2h on to 
level h, again discretely di~ergence-free.~.~ To explain this essentially new idea, we have to go 
into a little more detail. Figure 4 shows one coarse element on level 2h and the corresponding 
refined elements on level h. The macro-elementwise interpolation, which also works analogously 
for the scalar non-conforming and the Morley space,7 goes something like the following. 

1. Transfer the divergence-free coefficient vector (Y2,,  U t 2 h )  into the primitive coefficient 

2. Interpolate 'fully' on the macro-element to get (Uh, K). 
3. Compute Uth and Un, on all fine grid edges. 
4. Set y,, = y l h  at the macro-nodes and compute at the new vertices the values for y h  by 

5. Take the average of Y h  and Uth, which lie on macro-edges. 

These operations, using local transfer matrices, can be performed very quickly and efficiently. 
In fact, solving a Stokes equation takes about the same amount of time as solving a Lapalce 
equation. After all our extensive numerical t e ~ t s ~ , ~  we can state that this proposed combination 
is a very efficient and robust solver for linear problems of the above type, indpendent of all 
given data, domain and triangulation. Thus we can really claim to have a 'black box' solver, at 
least for the linear problems arising in the discretization process for the fully non-stationary 
Navier-Stokes equations. In the next section we will describe the discretization scheme for the 
non-linear and non-stationary Navier-Stokes equations and discuss some of its properties. 

vector ( U 2 h 9  v2h).  

integrating Un,. 

3. THE NAVIER-STOKES EQUATIONS AND THEIR DISCRETIZATION 

Our formulation of the stationary Navier-Stokes equations reads as 

-vAu + ( u - V ) u  + V p  = f, V - u  = 0 in R, u = g on an, 

tl Wl UtI w 

(25) 

Figure 4. Macro-element and refined elements 



SIMULATION OF NON-STATIONARY INCOMPRESSIBLE FLOW 81 

and respectively the variational form' 

find u E V(Q) such that 
va(u, v) + n(u, u, v) = (f, v) v v  E V(Q), 

with the trilinear form 

a v  . 
axi 

n(u, v, w):= In u i  -L w j  dx. 

Introducing the discrete form n h ( . ,  ., .), where 

and using the bilinear forms u,,(., .) and b h ( ' ,  -) from Section 2, our discrete problem is 

find uf E Hf such that 

vah(u;f, v;) + nh(u;f, u:, vf) = (f, ~ f )  V V ~  E Hf. 

The corresponding pressure P h  can again be computed by simple postprocessing. 
Since this central discretization of the convection part leads to stiffness matrices not of positive 

type (M-matrices) and to numerical oscillations of the solution, we use an upwind discretization 
based on the works of Ohmori and Ushijima' and Tobiska and Schieweck.' The main idea is 
to introduce some edge-oriented lumping regions and lumping operators. For this we divide 
each quadrilateral T E Th into eight barycentric fragments S i j  and define for each edge I-, and 
corresponding midpoint m, the lumping region R,  (see Figure 5) given by 

where A, is the set of indices k such that m, and mk are neighbouring midpoints. Defining the 
edge Tlr := as,, n as,,, the boundary aR, of the region R, can be written as 

dR, = u rlk 
k s A i  

and we achieve a new (edge-oriented) partition of = uTETh T as 

n = u R , .  
I 

I 
ml k 

Figure 5. Barycentric fragments Sij of T and lumping regions R,  around midpoint I 
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r 

r 

(34) 

(35) 

with 

vLk := Alkvh(ml )  + ( l  - l I k ) v h ( m k ) ?  

J-lk = 1 - i k l r  I L I  d c. (37) 

(36) 

where the functions ,Ilk are 

Finally, the new form f ih(Uh,  V h ,  W h )  is defined as 

uh * nlk d?(l - Alk(Uh))(Vh(f f lk)  - vh(f f l l ) )wh(f f l l ) .  (38) ? I,. f i h ( u h ,  v h ,  wh) :=  

We used the following possibilities for & (with x := ( l / v )  $,-lk uh * nlk dy as measure for the local 

(i) Simple upwind: 

Reynolds number). 

Alk(uh) := otherwise i' i f x 3 0  1. 
(ii) Samarskij upwind:" 

1. ($ + x)/(l + x) ifx 2 0 i 1/2(1 - x) otherwise Alh(uh) := 

For the following analysis we restrict ourselves to the case of the simple upwind scheme. Then 
our discrete problem reads 

(%) 
find uf E Hf such that 

v a h ( u f ,  Vf) f i h ( u f ,  Uf, Vf) = (f, V f )  VVf  E H f .  
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Lemma 5 

The following hold4 for functions in H h .  

(i) f i h ( u f ,  v h ,  v h )  3 0, vuf E Hf, v v h  E H h  (positivity). 
(ii) l f i h ( u E >  v h ,  w h )  - vh? wh)I d cliui - U h l / l h l j V h I / h / l W h / l h  (continuity). 

(iii) I n h ( u h ,  v h >  w h )  - f i h ( U h ,  v h ,  wh)I d chllog hl IIUhllhllVhllhllWhlih (approximation). 
(iv) For f E 

For the weighted upwind scheme (Samarskij upwind) it can be shown in one dimension" 
that the resulting discretization is of second-order accuracy, but the corresponding result in two 
dimensions is still an open problem. For the simple upwind it can be shown that using the 
primitive function spaces H h  and L h ,  the corresponding stiffness matrix s h ,  with 

there exists at least one solution {u t ,  P h }  E Hf x L h  (existence). 

sp):= h h  (+d, V;d) + h h  (,,n, ,,;d, vj .d  h )> (39) 

is an M - m a t r i ~ , ~ . ~  which results in very nice linear algebraic properties concerning convergence 
results for the jacobi, SOR or ILU method. This is essential to our solution method. 

For solving the discrete problems (GsSlf), we first introduce matrices A h  and N h (  u h ) ,  correspond- 
ing to the bilinear and trilinear forms respectively, and reformulate our problem as 

Then we use a j x e d  point defect correction method, given a starting vector U i  defined by 

ui+' = ui + W h [ v A h  + f i h ( U ; ) ) ] - l ( F h  - V A h U i  - N h ( U t ) U t ) .  (40) 

For the term Nh(Ui)  in the defect computation we can use one of the proposed upwind 
discretizations or the central one in (27), while for solving linear problems of the Oseen type, 

(41) - VAU + (u" * V)U + V p  = RHS, v-u  = 0, 

we always take one of the upwind discretizations because of their nice linear algebraic properties. 
The damping parameter o h  can be chosen as a fixed value or can be computed adaptively. 
Letting X h  be the solution of the linear problem corresponding to [vAh + R h ( U i ) ] - l  and letting 
u h  be the exact discrete solution, we try to minimize the error Ul: + O h x h  - u h  in a suitable 
norm. If we take the defect norm, we have to minimize the non-linear functional in the Euclidean 
vector norm 

IIICVAh f N h ( U i  + O h X h ) l ( U i  + - F h l l l E .  (42) 

We linearize this non-linear problem by replacing N h ( U ;  + W h x h )  by Nh(Ui  + o , X h ) ,  where 
is now fixed. Then the solution of the corresponding minimization problem is 

(43) 
( A h o x , ,  Fh - Ah" U i )  - 

o h  = 
(AhOXh, AhoXh) ' 

with A: = V A h  + N h ( U i  + W o X h ) .  

Remark 

For simulating non-Newtonian incompressible fluids,' ' we simply have to introduce instead 
of the linear diffusion term VAU the non-linear term V - ( V ( E  + IVul)-"V)u, with GLE [0,1]. 
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Therefore in (40) we only have to replace Ah by Ah(Ut)  and our $xed point defecr correction 
method reads 

u;" = U;  + Wh[VAh(U;) + flh(U;)]-'(Fh - VAh(Ut)U; - Nh(U;)U;). (44) 

First numerical results for this problem can be found in Reference 11. 

With this solver for the stationary Navier-Stokes solver, we will develop a corresponding fast 
and robust solution method for the non-stationary equations, written as 

u, - VAU + (u  - V)u + V p  = f, V - u = 0 in R x (0, T ) ,  

u = g  on dR, U p = o  = uo. 

Because of the stiffness of this problem, A-stable methods are desired for the time discretization. 
For the analysis of the schemes used it is most instructive to look first at the scalar linear test 
equation 

i ( t )  + I x ( t )  = 0, t 2 0, (45) 

where LEC, Re /z 2 0. A time-stepping scheme applied to this equation, with a constant time 
step size At,  generates a sequence of values x ,  - x(t,), with t ,  := nAt. The behaviour of the scheme 
as t + 03, depending on the parameter I ,  is usually characterized by the ampliJication factor 
o = w(IAt). In particular, for the one-step schemes which we use there holds x ,  = w"xo.  In  terms 
of w we can formulate the following desirable properties of time-stepping schemes. 

(i) Iw(2At)I 2 1 (local stability). 
(ii) lim,,,,,Iw(AAt)l B 1 - O(At) (global regularity). 

(iii) lim,,,,,Iw(IAt)l 2 1 - 6 < 1 (smoothing property: strong A-stability). 
(iv) Iw(/zAt)I - 1 for Re 2 = 0 (non-dissipative). 

The following one-step schemes are given in a form which applies to the general linear 
evolution equation 

u, + A ( t b  = f (0, A,  = m,), f n  = f (4J (46) 

The approximation properties can be expressed in terms of the amplification factor o(; lAt) ,  where 
I is an eigenvalue of A(t) .  Now our hope is to carry these conclusions also to the non-linear 
Navier-Stokes equations. The following results can be found in more detail in References 4 and 
12. 

The one-step 9-schemes 

[ I  + 9 A t A , + l ] ~ , + l  = [ I  - (1 - S)AtA,]u, + 9Atf,+l + (1 - 9)Atf ,  (47) 

with amplification factors 

1 - (1 - 9)z 
1 + 9z o ( z )  = 

We exclude the explicit Euler scheme (9 = 0) since it is only conditionally stable (At  < l//z), of 
first-order accuracy, and also since the mass matrix is not spectrally equivalent to a diagonal 
matrix (lumping). Its implicit counterpart, the implicit Euler scheme (9 = l), is strongly A-stable 
(Iw(z)( + 0 for Re ?, + 03) but tends to damp out free oscillations ((w(iAt)(  < 1, (01 = 0.995 for 
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At = 0.1) and is also of first-order accuracy. The Crank-Nicolson scheme (9  = f) is of second 
order but has only a low-damping property (Iw(z)l + 1 for Re 1 + co) and is only A-stable; 
however, free oscillations are well preserved (Iw(iAt)I = 1). Summing up, both schemes have some 
advantages and some disadvantages: The implicit Euler is very robust but inaccurate and 
strongly damping, while the Crank-Nicolson is more accurate but tends to become unstable. A 
scheme possessing the advantages of both of these is the following. 

The fractional step 9-scheme 

Choosing 9 E (0, l), 9' = 1 - 29 and a E [0, 11, b = 1 - a, the macro-time step t ,  + t,+ is split 
into the following three substeps (see also Reference 13): 

[ I  + a 9 A t A , + s ] ~ , , + s  = [ I  - BSAtA,]u, + SAtf,, 

[ I  + B9'AtAn+1-S]~ ,+1- s  = [ I  - ~ 9 ' A t A , + , ] u , + s  + 9 'At fn+ l - s ,  (49) 

[ I  + a g A t A n + 1 l ~ n + l  = C I - B 9 A t A n + , - s ] ~ n + l - ~ + Q A t f + l ,  

with 

(1 - BSz)'(l - a9'z) 
o(z) = (50) 

(1 + a9z)Z(1 + Ps'z) .  

We always perform the macro-time step t ,  + t,+3ar. Then three steps of the one-step schemes 
and the three substeps of the fractional step scheme lead to the same time and the step sizes, 
costs and discretization errors are comparable. 

For the special choice 9 = 1 - J2/2 this scheme is of second order. Taking a = 
(1 - 29)/(1 - 9), the coefficient matrices are the same in all substeps. Further, the scheme 
is strongly A-stable (limRel+m [o(z) I  = /I/. - 0.7) and free oscillations are well preserved 
(Iw(iAt)l - 0.9998 for At = 0.8). These theoretical results will be (numerically) verified by the 
following extensive test calculations in the next section. 

Applying these $-schemes to our fixed point defect correction method for the solution of the 
Navier-Stokes equations, we have to solve non-linear systems of equations at each time step of 
the following type: 

C'h + a9At(vAh + N h ( U h , n + l ) ) l U h . n + l  = C M h  - b 3 ' A t ( v A h  + N h ( U h , n ) ) l U h , n  

+ SAtFh,,+ I 9'AtFh,,, (5  1) 

for some constants a, b, 9 and 9', depending on the actual method and the discretization Nh(.) 
of the convection part. Consequently, in each substep we have to solve a non-linear problem 

[ k f h  + CVAt.4, + cAtNh(Xh)]Xh = RHS, (52) 

which is easily done using the proposed method for the stationary Navier-Stokes equations. 
Thus we think that we have developed a very robust method for the fully non-stationary 

equations, consisting of the fractional step 9-scheme for the time discretization, the fixed point 
defect correction method for the non-linear problems, an upwind discretization for the convec- 
tion terms, and a multigrid algorithm, adapted to the discretely divergence-free finite elements, 
for the linear non-symmetric subproblems. This is the candidate for our 'FRA black box' solver, 
but we have to prove all conditions in the following test calculations. 
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4. NUMERICAL RESULTS 

In this section we will discuss some questions concerning our proposed FRA solver: 

(i) a comparison of the influence of different discretization schemes in space and time w.r.t. 

(ii) the influence of the ‘semi-adaptively ’ chosen grids 
(iii) the question of the ‘right’ (artificial) boundary conditions (for many more details 

the accuracy, robustness and efficiency 

concerning this question see Reference 14. 

Before we start with the presentation of the results, we have to say something about 
the visualization techniques used, since this is a very important factor in fluid dynamics 
simulations (for more details see Reference 15). For stationary pictures we use the well-known 
(and inexpensive) graphics package MOVIE.BYU. This package works well for tasks such as 
plotting of streamlines, plotting of vectors, presentation of the pressure in 3D, coloured norms 
of velocity and pressure, and finding reattachment points or vortex separation zones. Additionally, 
new routines are needed for the visualization of non-stationary data. One reason is that for 
simulations of more complex time-dependent flows, even thinking of quasi-turbulent processes, 
only movies can show ‘all’ relevent information. Therefore we developed a fully interactive 
particle-tracing tool’ ’ and a correspondingly suited data structure, which creates movies for 
the computer screen or video tapes, comparable with ‘real life’ experiments. Figure 6 demon- 
strates the importance of these non-stationary tools by visualizing a vortex street behind an 
obstacle in several different ways. The five pictures represent the same flow after 150 time steps: 
with absolute and relative streamlines (after subtracting the Stokes flow, first row), with absolute 
and relative velocities (second row), and with the corresponding particle-tracing tool. These 
figures clearly demonstrate the importance of the ‘right’ visualization. For our test calculations 
we chose the following types: driven cavity and backward-facing step type (because of their simple 
geometry, both are well known in mathematical works), flow around obstacles, flow in a uenturi 
pipe, flow through a hole in an ‘infinite’ space, and ‘quasi-turbulent’ jet flow in a box. For 
‘mathematically historical’ reasons we start with the usual (lid-) driven cavity problem on the 
unit square: 

-vAu + ( u - V ) u  + V p  = 0, V - u  = 0 in Q, 

u = 0 on dQ\{y = l}, u = ( ~ , O ) ~  o n d Q n { y =  l } .  

Figure 6. Different visualizations for the Karman vortex street (Re = 5 0 0 )  
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Figure 7. Semi-adaptive coarse grid for driuen cauity 

Table I. Values for driven cavity on semi-adaptive grids 

Centre vortex Right vortex 

Y (x, Y) Y (X? Y )  

Four refinements 

Five refinements 

C -0.090 (0.521,0*542) 0.213 - 2 (0.856,0.092) 
S -0.137 (0.531,0.553) 0.225 - 2 (0.851,0.098) 
SC -0.123 (0.510,0.542) 0’224 - 2 (0.851,0.098) 

Comparisons 

87 

Figure 8. Streamlines (serniadapfiue) for C, S and SC schemes: first row on level 4, second row on level 5 
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Figure 7 shows the ‘semi-adaptive’ coarse grid used, which is refined four times (4801 vertices, 
14,209 unknowns, hmin = 1/250, h,,, = 1/48) or five times (18,817 vertices, 56,065 unknowns, 
hmin = 1/500, h,,, = 1/96. 

We choose Re = 2000, since for this Reynolds number range (see e.g. References 16 and 17) 
a ‘new’ secondary eddy appears at the upper left edge. In Table I the values and co-ordinates 
are given for the main vortex and the secondary vortex in the lower right corner and are 
compared with the values of Vanka (V)I8 and Zhang (Z)” (both on rectangular grids). We show 
the solutions of the central discretization (C) (by our defect correction method; see (40)), the 
Samarskij upwind discretization (S) and additionally the upwind solution with (only) one 
subsequent central defect correction step (SC). The corresponding pictures can be found in Figure 
8. For comparison, in Table I1 the corresponding results on an equidistant grid are given for 
l /h  = 96, 128 and 192 and in Figure 9 the resulting plots. 

The first observations resulting from these and many other tests4 are the following. 

1. Only on equidistant grids and exclusively for low Reynolds numbers do the central schemes 
seem to be of higher accuracy than the upwind schemes. 

2. Using semi-adaptioe grids adapted to the expected separation zones, much better results 
can be achieved by the upwind schemes. For the central schemes additional refinement 
is needed for numerical stabilization in regions of higher velocity. However, these 
schemes are so unstable that even one subsequent defect correction step can cause bad 
results. 

3. Even for a mesh size of l /h  = 192 we are still far away from the continuous solution (because 
of large changes in the streamline values), so it seems to be impossible for this code to 
compute reference solutions for this range of Reynolds numbers using mid-range work- 
stations. 

Some of these observations are confirmed by the results for Re = 10,000 given in Table I11 

Table 11. Values for driven cavity on equidistant grids 

Centre vortex Right vortex 

Y (X? Y) Y (X> Y )  

C 
S 
sc 

C 
S 
sc 

C 
S 
sc 

- 0.086 
-0.146 
-0.129 

- 0.096 
-0.145 
-0’130 

-0.107 
-0.142 
-0.127 

Mesh size I / h  = 96 

(0.520,0.552) 0.205 - 2 
(0.520, 0.562) 0.233 - 2 
(0.510, 0.552) 0.245 - 2 

Mesh size I / h  = 128 

(0.523,0.546) 0’219 - 2 
(0.523,0.554) 0.246 - 2 
(0.515,0.554) 0‘251 - 2 

Mesh size I / h  = 192 

(0.520,0.546) 0.233 - 2 
(0.517,0.546) 0.251 - 1 
(0.520,0346) 0.256 - 2 

(0.854,0.093) 
(0.843,0.104) 
(0.843, 0.104) 

(0.851,O.lOl) 
(0.843,O.lOl) 
(0.843,0.101) 

(0.848,0.098) 
(0.843,0.098) 
(0.838,0.093) 
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Figure 9. Streamlines (equidistant) for C, S and SC schemes: row-wise l / h  = 64, 96, 128, 192 

Table 111. Values on semi-adaptive grid for Re = 10,000 (level 5) 

Centre vortex Right vortex 

Y (x7 Y) Y (x, Y) 

C -0.038 (0.531,0.510) 0.139 - 2 (0.839,O@ll) 
S -0.126 (0.521,0.542) 0.368 - 2 (0~808,0.070) 

Comparisons 

G -0.1 19 (0.51 1,0333) 0.342 - 2 (0.765,0.058) 
Z -0.126 (0.51 1,0.531) 0.308 - 2 (0’757,0.058) 
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and plotted in Figure 10, which show very unphysical vortices for the central scheme (compared 
with Z’” and Ghia et ul. (G)16). 

We also made some non-stationary computations which highlight some very interesting 
(in)stability properties of the Crank-Nicolson scheme. We computed the flow for Re = 15,000 
starting with a low-Reynolds-number solution and using the time step size A? = 0.1. After 
some time small oscillations appeared near the right upper corner. At first they did not influence 
the overall solution, but after many more steps the solution exploded (see Figure 11). For the 
same input data the implicit Euler scheme and the fractional step scheme performed well. The 
reason for this was our fault, since the non-linear system at each time step was not solved with 
enough accuracy. We always performed 10 steps (maximum) with our fixed point iteration 
method (40) without damping (oh = 1) to gain one digit per iteration. This procedure always 
worked well (and still works fine) for the non-steady equations, only in case the solution 
blew up. Thus we think that this may be an interesting pointer to the ( n) instabilities of 
the Crank-Nicolson scheme which may appear in a long-time calculation, especially if started 
with rough initial values. 

Some other very interesting computations concerning dricen cavity flows (perhaps more 
appropriate to physical experiments) are the following. Figure 12 shows the results of computing 
the flow in a long pipe with a cavity inside for a high Reynolds number. The length of the cavity 
is L = 1, the maximum pipe inflow velocity is U = 1 and the viscosity is l/v = 100,000. Since 
we arc only interested in the effects in the cavity, we restricted ourselves to the computational 
domain shown and used the ‘do nothing’ outflow boundary ~ond i t ion . ’~  We reached a 
‘periodically’ oscillating flow (presented here in eight characteristic states) with a very remarkable 
velocity profile for y = 1. The maximum velocity in the cavity is about 0.04, which leads to a 
characteristic (cavity) Reynolds number of 4000. It is obvious that these more physical boundary 
conditions lead to a velocity profile at the line y = 1 not comparable with the (usual) lid-driven 
cavity. 

Figure 11. Crank-Nicolson scheme for Re = 15,000 
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Figure 12. Computations for a ‘natural’ cavity problem: full domain, restricted computational domain with coarse grid, 
streamlines for different times, typical velocity profile at y = I ,  norm of the velocity for subsequent time steps 
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Figure 13. Driven cavity with two circular obstacles for I / v  = 500 

Figure 14. Non-Newtonian flow for CL = 0, 0.3, 0.5 

Another example shows the applicability of our method to several boundary components. 
This test is a driven cavity computation with two circular obstacles inside (see Figure 13). It is 
remarkable that the centrally discretized solution (left) has smaller separation zones than the 
upwind solution (right). 

As a final result concerning this type of cavity problem we tested our non-Newtonian fluid 
model (44) (see also Reference 11 for many more details). In Figure 14 some results with 
Re = 2000 for ~1 = 0 (i.e. Newtonian flow), 0.3 and 0.5 are presented. 

The next problem is the well-known backward-facing step flow, for which many comparisons 
and results can be found in Reference 20. Our computational domain has height 1, length before 
the step 3, height of the step f and length after the step L. We made many calculations concerning 
the reattachment point" for various discretizations of the convective part and various lengths 
L; all our results are very similar to those proposed in Reference 20 (for many more details see 
Reference 4). The mesh used (for L = 20) is represented by the coarse grid in Figure 15; the 
actual grid was refined four times, resulting in 24,000 vertices and 70,000 unknowns. The 
following calculations for Re = 5000 and At = 0.33 are most interesting: they show a 'quasi- 
periodically' oscillating flow represented by streamlines and particle-tracing plots at every third 
time step (Figure 16) and at every ninth time step (Figure 17). For a better visualization we 
scaled the y-co-ordinate by a factor of two. 
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I 

Figure 16. Streamlines for Re = 5000 

The following calculations concern the flow around an obstacle, here in the form of an inclined 
ellipse in a channel. A typical computational domain and the corresponding semi-adaptive coarse 
grid are shown in Figure 18. This mesh is refined four times, leading to 27,000 vertices and 
80,000 unknowns. The height of the channel is 7, the major axis of the ellipse is 1 and the 
viscosity is l / v  = 500. First we show some results concerning the difficulties in visualizing 
non-stationary flows (see also Reference 15). Looking again at  Figure 6,  the differences between 
the ‘stationary’ tools (streamlines, vector plots) and the ‘non-stationary’ tools (particle tracing) 
are obvious and justify the costly development of such methods. Also, the question of the ‘right’ 
boundary conditions was treated (for more details see Reference 14). Figure 19 shows the same 
computation with our ‘do nothing’ outflow condition and constant inflow for two different 
lengths of the channel. In the next figures we demonstrate some results for the same configuration 
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Figure 17. Particle-tracing plots for Re = SO00 

of all input parameters (Samarskij upwinding, l / v  = 500, T = 50, start from rest) but with varying 
time step sizes (Ar = 0.1 1,0.33, 1.0) and various time-stepping schemes (implicit Euler (IE), 
Crank-Nicolson (CN), fractional step (FR)). In Figure 20 the relative streamlines (after 
subtracting the corresponding Stokes flow) for T = 7, 17 and 50 and At = 0.33 are depicted. The 
implicit Euler scheme results in less accurate solutions, corresponding to its first-order accuracy, 
while the Crank-Nicolson and fractional step schemes, both of second order, lead to better 
results. Figure 21 demonstrates that our time step size is fine enough (comparing the FR results 
for At = 1-0 and 0.11) and that for the implicit Euler scheme the time step muit be chosen (at 

Figure 18. Coarse and refined grid 
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I I 

Figure 19. Different lengths of the channel 

least) 10 times smaller than that of the fractional step scheme. Additionally, we show in Figure 
22 that (in many cases) it is impossible to differentiate between the space error (left column for 
fractional step with Ar = 0 3 3  on the coarser mesh) and the time error (right column for implicit 
Euler on the fine mesh). Both calculations seem to produce (unphysically) stationary results. 
Finally, in Figure 23 we refined only around the ellipse, with a coarse mesh after the ellipse (left 
column) and for comparison a very fine mesh only around the ellipse (right column). The result, 
as expected, is much worse in the second case. 

After all our extensive calculations for these 'classical mathematical' test problems 
(driven caviry, backward-facing step, flow around an obstacle) we would like to make some 
observations. 

We prefer the upwind discretizations for the convective parts because they lead, as opposed 
to the theoretical more accurate central schemes, to stabilized solutions where the accuracy can 
be improved by our  'semi-adaptive' meshes. For the time discretization we favour the fractional 

Figure 20. Flow for Ar = 0.33 for FR (left), CN (middle) and IE (right) schemes 



96 S. TUREK 

step 9-scheme since it is very robust (like implicit Euler) and accurate (like Crank-Nicolson), 
with about same amount of arithmetic operations for building up and solving the corresponding 
stiffness matrices (one has to compare three steps of Crank-Nicolson with the three substeps of 
the fractional step scheme to get the same error and costs). Using the ‘do nothing’ boundary 
condition, we can restrict the computation to smaller computational domains. The proposed 
fixed point defect correction method is very robust and efficient for the non-linear equations, 
and together with the outer iteration for the time discretization we also have a good non- 

Figure 22. FR 0.33 coarse and IE-O.33-fine 
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Figure 23. Refinement after the ellipse and refinement around the ellipse 

stationary solver. Together with the proposed graphical tools our method seems to fulfil the 
conditions of an FRA solver. Thus our next step is to apply this implemented code to some 
more complicated and more interesting problems such as the following. 

The first problem (as a demonstration of the Bernoulli principle) is the flow through a special 
pipe (‘venturi pipe’14) modelling a device used in sailboats to drain water from the hull. The 
model used is drawn in Figure 24. We expect some inflow (upper small device) into the boat for 
low velocity and outflow for higher velocity. As boundary conditions we prescribe a flux at the 
inlet (left aperture) and the ‘do nothing’ condition (equivalent to zero mean pre~sure’~)  
at both of the holes. We performed two stationary calculations for viscosity parameters of 10 
and 50 and a non-stationary calculation for l/v = 1000 in which we reached a ‘turbulent’ flow. 
In Figures 25 and 26 the corresponding streamlines (snapshots for l/v = lOOO), the velocity 
profile in the upper pipe and the non-stationary flow (by particle tracing and streamlines) are 
displayed for subsequent times. 

.._....._... . ........... ... ......... . ... ................................. 

v v v  

I ------. 

Figure 24. Computational model and coarse grid for ‘venturi pipe’ 
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Figure 25. Streamlines and velocity profiles ( l / v  = 10, 50, 1OOO) for the ‘venturi pipe’ 

The next example is the flow through a hole in an ‘infinite space’. We restricted the 
computational domain to the ‘circle’ pictured in Figure 27, with homogeneous boundary values 
at the wall (the hole is in the centre) and the ‘do nothing’ condition on the circle boundary (for 
more details see Reference 14). The hole width is 0.2 and the radius of the domain is 4.5. In 
Figure 28 some results (streamlines) for a ‘large’ viscosity ( l / v  = 1, 10, 50) and prescribed flux 
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Figure 26. Time-dependent Row (particle tracing and streamlines) for I/v = lo00 
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Figure 27. Domain and coarse grid for flow through a hole 

Figure 28. Streamlines for l / v  = I ,  10, 50 

Figure 29. Streamlines for subsequent time steps 
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Figure 30. Particle-tracing representation of the flow 

S = 0.1 are plotted. Additionally, we performed some non-stationary calculations ('pufs-pufs') 
for l / v  = 100 using the pressure drop ~0nd i t ion . l~  We prescribed the pressure difference A p  = 1 
for the first 40 time steps, then A p  = 0 for the next 40, again A p  = 1 for 40 steps and finally 
A p  = 0 until the end (700 time steps with Ar = 0.1). In Figures 29 and 30 sequences of 
particle-tracing and streamline pictures are depicted. The second 'smoke ring' catches the 
first one and passes through it nearly, while the first one is accelerated at the same time 
('leapfrogging'; compare with the book of Van Dyke"). Both rings pass through our 
artifical boundary, demonstrating the quality of the 'do nothing' boundary condition in this 
case. 

As a final example we calculate the 'airflow' of a jet in a box. The computational domain is 
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Figure 31. Computational domain, coarse grid and finer grid for the jet flow 

presented in Figure 31. The inflow is 4.8 m/s-’ at the left edge and 75 m/s-’ near the right 
upper corner (with a width of 84mm), while the ‘do nothing’ (outflow) condition is used 
in the lower part of the right edge. The viscosity is v = m2 s-’ .  The resultant flow is ‘highly’ 
non-stationary and ‘turbulent’-looking, with a very complex structure. It is very remarkable 
that for this high Reynolds number the chosen mesh (the depicted coarse grid was refined five 
times, resulting in 85,000 grid points, with 32 grid points for the inflow part near the upper right 
corner) is fine enough to show how the symmetry of the incoming sharp jet is broken far away 
from influences coming from the boundary. The corresponding streamline pictures are shown 
in Figure 32 and the particle-tracing plots in Figure 33. Again we see the differences in the 
visualization techniques. 

5. CONCLUSIONS 

We have developed a solution method for the non-stationary Navier-Stokes equations in two 
dimensions belonging to the class of FRA solvers proposed in the introduction. Our main 
components are discretely divergence-free finite elements of second order, a corresponding 
multigrid algorithm for the linearized Navier-Stokes equations, an upwind discretization for the 
convective parts, a fixed point defect correction method for the non-linearity, an accurate and 
robust time-stepping scheme and appropriate visualization tools on workstations for both 
stationary and non-stationary flows. We have tested this code for several well-known problems 
such as driven cavity flow and flow over a step or around an obstacle and for some new, more 
complicated problems. The next step will be its implementation on new computer architectures 
such as transputer systems, where first successful attempts have been made by Schieweck.22 
We will also develop a corresponding numerical method with graphical support in three 
space dimensions. Besides a clever visualization, the most difficult point will be an efficient 
treatment of the divergence-free finite elements. First attempts have been made by H e ~ h t , ’ ~  but 
his approach must be improved. Then the corresponding multigrid routines must be implemented 
efficiently as in 2D, because they consume the most computer time in this code. We hope to 
have the possibility of testing this code in 2D and 3D on more practical and physically interesting 
problems. 



SIMULATION OF NON-STATIONARY INCOMPRESSIBLE FLOW 103 

Figure 32. Streamlines for jet flow in a box 
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Figure 33. Particle-tracing plots for jet flow in a box 
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